함수의 극한 (1) - 함수의 수렴과 발산
함수의 수렴과 발산 함수 $f(x)$에서 $x$의 값이 a가 아니면서 a에 한없이 가까워질 때($x\rightarrow a$) $f(x)$의 값이 일정한 값 L에 한없이 가까워지면 함수 $f(x)$는 L에 수렴한다. ('모이다'라는 뜻) 여기서 L을 함수 $f(x)$에서의 극한값 or 극한이라고 함. 표현하는 방법: $x\rightarrow a$일 때 $f(x)\rightarrow L$ 기호로 나타내기: $\lim_{x \rightarrow a}f(x)=L$ (x가 a로 다가갈 때 f(x)는 L로 다가간다.) 발산: 수렴하지 않는 모든 경우 (함수 $f(x)$가 어느 값으로도 수렴하지 않으면 함수 $f(x)$는 발산한다고 한다.) 함수 $f(x)$에서 x의 값이 a가 아니면서 a에 한없이 가까워질 때, ..