ex)
๋ฑ๋น์์ด ${a_n}$์ ์ฒซ์งธํญ๋ถํฐ ์ nํญ๊น์ง์ ํฉ $S_n$์ ๋ํ์ฌ $S_n=30, S_{2n}=50$์ผ ๋, $S_{3n}$์ ๊ฐ์ ๊ตฌํ์์ค.
- ์ ์ํ I / 146p 970๋ฒ ๋ฌธ์
$
\begin{aligned}\dfrac{a\left( r^{2n}-1\right) }{r-1}=50\\
\dfrac{a\left( r^{n}-1\right) }{r-1}=30\\
\dfrac{\dfrac{a\left( r^{2n}-1\right) }{r-1}}{\dfrac{a\left( r^{n}-1\right) }{r-1}}=\dfrac{5}{3}\\
\dfrac{r^{2n}-1^{2}}{r^{n}-1}=\dfrac{\left( r^{n}+1\right) \left( r^{n}-1\right) }{r^{n}-1}=r^{n}+1=\dfrac{5}{3}\\
r^{n}=\dfrac{2}{3}\\
\dfrac{a}{r-1}\times \left( -\dfrac{1}{3}\right) =30\\
\dfrac{a}{r-1}=-90\\
S_{3n}=\dfrac{a\left( r^{3n}-1\right) }{r-1}=-90\times \left( \dfrac{8}{27}-1\right) \\
=-90x\left( -\dfrac{19}{27}\right) =\dfrac{190}{3}\end{aligned}
$